ESA - Information Note
Nr 12-98 - Paris, 10 April 1998   [ Version française ]

ISO finds a very steamy cloud in interstellar space

A team of US astronomers has discovered a large concentration of water vapour in a cloud of interstellar gas close to the Orion Nebula, using the European Space Agency's Infrared Space Observatory, ISO, which is operated with the participation of NASA. ISO has found water vapour in many places, from the outer planets to distant galaxies, but the concentration now reported is twenty times larger than that measured previously in other interstellar gas clouds.

The discovery, which may provide an important clue to the origin of water in the Solar System, is reported in an article in Astrophysical Journal Letters, to be published on 20 April. This Information Note is distributed simultaneously with a Press Release on the same subject from Cornell University, Johns Hopkins University, the Harvard/Smithsonian Center for Astrophysics, and NASA's Ames Research Center.

The water vapour is in the Orion Molecular Cloud, a giant interstellar mass composed primarily of hydrogen molecules. The observations were carried out in October 1997 with the Long Wavelength Spectrometer, devised by a British-led team as one of four instruments on board ISO.

Looking at long infrared wavelengths, the astronomers saw the characteristic signature of emission by water vapour.

"The interstellar gas cloud that we observed is being pummelled by shock waves that compress and heat the gas," says Martin Harwit of Cornell University, an ISO mission scientist and lead author on the article reporting the finding. "These shock waves are the result of the violent early stages of starbirth, in which a young star spews out gas that slams into its surroundings at high speed. The heated water vapour that we observed is the result of that collision."

Harwit also suggests that shock waves are a cause of starbirth as well as a result. "In the future," he says, "they may also trigger the formation of additional stars and planets as they compress the gas cloud that we observed, but only if surplus heat can be radiated away. Even though the interstellar gas is composed primarily of hydrogen molecules, water vapour is a particularly efficient radiator at far-infrared wavelengths and plays a critical role in cooling the gas and facilitating the star formation process. Because the Earth's own wet atmosphere is completely opaque at the wavelengths of interest, the observations that we are reporting today are possible only from space with the use of the ISO satellite."

A correct prediction

The concentration of water vapour measured by the US team was roughly one part in 2000 by volume, far larger than any measured previously in interstellar space. But the strength of the water radiation detected from Orion was in perfect agreement with theoretical predictions in the PhD thesis of team member Michael Kaufman, a former Johns Hopkins graduate student now at NASA's Ames Research Center.

"An enhanced concentration of water is precisely what we expected in this gas cloud," comments team member Gary Melnick of the Harvard-Smithsonian Center for Astrophysics. "We are looking at a region of interstellar space where shock waves have made the gas abnormally warm. For the past 25 years, astrophysicists have been predicting that whenever the temperature exceeds about 100 °C, chemical reactions will convert most of the oxygen atoms in the interstellar gas into water. And that's exactly what we've observed in Orion."

The source of the water we live by

The high concentration of water measured in Orion may have also had implications for the origin of water in the Solar System and on the Earth itself, according to team member David Neufeld of Johns Hopkins University.

"The interstellar gas cloud that we observed in Orion seems to be a huge chemical factory," Neufeld says, "generating enough water molecules in a single day to fill the Earth's oceans sixty times over. Eventually that water vapour will cool and freeze, turning into small solid particles of ice. Similar ice particles were presumably present within the gas cloud from which the Solar System originally formed. It seems quite plausible that much of the water in the Solar System was originally produced in a giant water-vapour factory like the one we have observed in Orion."

A footnote about ISO

ISO was put into orbit in November 1995, by an Ariane 44PP launcher at the European space base at Kourou in French Guiana. As an unprecedented observatory for infrared astronomy, able to examine cool and hidden places in the Universe, ISO has observed more than 26,000 individual objects. A supply of liquid helium, used to cool the telescope and instruments close to the absolute zero of temperature, has lasted much longer than expected, but ran out on 8 April 1998 (see ESA Press Information Note N°11-98 of 9 April).

Further information is available from:

ESA Public Relations Division Tel: +33(0)1.53.69.71.55 Fax : +33(0)1.53.69.76.90

ESA ISO: Dr Martin Kessler at +34.(9)1.813.12.53 or mkessler@iso.vilspa.esa.es

And from US team members: Prof. Martin Harwit at +1 202-479-6877 or mharwit@ibm.net Prof. David Neufeld at +1 410-516-8582 or neufeld@pha.jhu.edu Dr Gary Melnick at +1 617-495-7388 or gmelnick@cfa.harvard.edu Dr Michael Kaufman at +1 650-604-0320 or kaufman@warped.arc.nasa.gov

Panels showing two examples of measurements carried out on board the ISO, together with an image of the Orion nebula taken with the Wide Field Planetary Camera 2 on NASA's Hubble Space Telescope can be seen on the World Wide Web at http://www.pha.jhu.edu/~neufeld/orionwater.html, or in our Science Gallery